25 research outputs found

    Genomic and Phenotypic Analysis of an ESBL-Producing E. coli ST1159 Clonal Lineage From Wild Birds in Mongolia

    Get PDF
    Background In addition to the broad dissemination of pathogenic extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli in human and veterinary medicine and the community, their occurrence in wildlife and the environment is a growing concern. Wild birds in particular often carry clinically relevant ESBL-producing E. coli. Objectives We analyzed ESBL-producing and non-ESBL-producing E. coli obtained from wild birds in Mongolia to identify phylogenetic and functional characteristics that would explain the predominance of a particular E. coli clonal lineage in this area. Methods We investigated ESBL-producing E. coli using whole-genome sequencing and phylogenetics to describe the population structure, resistance and virulence features and performed phenotypic experiments like biofilm formation and adhesion to epithelial cells. We compared the phenotypic characteristics to non-ESBL-producing E. coli from the same background (Mongolian wild birds) and genomic results to publicly available genomes. Results and Conclusion We found ESBL-producing E. coli sequence type (ST) 1159 among wild birds in Mongolia. This clonal lineage carried virulence features typical for extra-intestinal pathogenic or enterotoxigenic E. coli. Comparative functional experiments suggested no burden of resistance in the ST1159 isolates, which is despite their carriage of ESBL-plasmids. Wild birds will likely disseminate these antibiotic-resistant pathogens further during migration

    Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli – the role of similar biological processes despite structural diversity

    Get PDF
    Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli

    Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles

    Get PDF
    The final authenticated publication is available at https://doi.org/10.1109/TGRS.2018.2858004.Soil moisture is a key environmental variable, important to, e.g., farmers, meteorologists, and disaster management units. Here, we present a method to retrieve surface soil moisture (SSM) from the Sentinel-1 (S-1) satellites, which carry C-band Synthetic Aperture Radar (CSAR) sensors that provide the richest freely available SAR data source so far, unprecedented in accuracy and coverage. Our SSM retrieval method, adapting well-established change detection algorithms, builds the first globally deployable soil moisture observation data set with 1-km resolution. This paper provides an algorithm formulation to be operated in data cube architectures and high-performance computing environments. It includes the novel dynamic Gaussian upscaling method for spatial upscaling of SAR imagery, harnessing its field-scale information and successfully mitigating effects from the SAR's high signal complexity. Also, a new regression-based approach for estimating the radar slope is defined, coping with Sentinel-1's inhomogeneity in spatial coverage. We employ the S-1 SSM algorithm on a 3-year S-1 data cube over Italy, obtaining a consistent set of model parameters and product masks, unperturbed by coverage discontinuities. An evaluation of therefrom generated S-1 SSM data, involving a 1-km soil water balance model over Umbria, yields high agreement over plains and agricultural areas, with low agreement over forests and strong topography. While positive biases during the growing season are detected, the excellent capability to capture small-scale soil moisture changes as from rainfall or irrigation is evident. The S-1 SSM is currently in preparation toward operational product dissemination in the Copernicus Global Land Service.5205392

    Practical whole-system provenance capture

    Get PDF
    Data provenance describes how data came to be in its present form. It includes data sources and the transformations that have been applied to them. Data provenance has many uses, from forensics and security to aiding the reproducibility of scientific experiments. We present CamFlow, a whole-system provenance capture mechanism that integrates easily into a PaaS offering. While there have been several prior whole-system provenance systems that captured a comprehensive, systemic and ubiquitous record of a system’s behavior, none have been widely adopted. They either A) impose too much overhead, B) are designed for long-outdated kernel releases and are hard to port to current systems, C) generate too much data, or D) are designed for a single system. CamFlow addresses these shortcoming by: 1) leveraging the latest kernel design advances to achieve efficiency; 2) using a self-contained, easily maintainable implementation relying on a Linux Security Module, NetFilter, and other existing kernel facilities; 3) providing a mechanism to tailor the captured provenance data to the needs of the application; and 4) making it easy to integrate provenance across distributed systems. The provenance we capture is streamed and consumed by tenant-built auditor applications. We illustrate the usability of our implementation by describing three such applications: demonstrating compliance with data regulations; performing fault/intrusion detection; and implementing data loss prevention. We also show how CamFlow can be leveraged to capture meaningful provenance without modifying existing applications.Engineering and Applied Science

    Novel Pharmacokinetic/Pharmacodynamic Parameters Quantify the Exposure-Effect Relationship of Levofloxacin against Fluoroquinolone-Resistant Escherichia coli

    Get PDF
    Minimal inhibitory concentration-based pharmacokinetic/pharmacodynamic (PK/PD) indices are commonly applied to antibiotic dosing optimisation, but their informative value is limited, as they do not account for bacterial growth dynamics over time. We aimed to comprehensively characterise the exposure–effect relationship of levofloxacin against Escherichia coli and quantify strain-specific characteristics applying novel PK/PD parameters. In vitro infection model experiments were leveraged to explore the exposure–effect relationship of three clinical Escherichia coli isolates, harbouring different genomic fluoroquinolone resistance mechanisms, under constant levofloxacin concentrations or human concentration–time profiles (≀76 h). As an exposure metric, the ‘cumulative area under the levofloxacin–concentration time curve’ was determined. The antibiotic effect was assessed as the ‘cumulative area between the growth control and the bacterial-killing and -regrowth curve’. PK/PD modelling was applied to characterise the exposure–effect relationship and derive novel PK/PD parameters. A sigmoidal Emax model with an inhibition term best characterised the exposure–effect relationship and allowed for discrimination between two isolates sharing the same MIC value. Strain- and exposure-pattern-dependent differences were captured by the PK/PD parameters and elucidated the contribution of phenotypic adaptation to bacterial regrowth. The novel exposure and effect metrics and derived PK/PD parameters allowed for comprehensive characterisation of the isolates and could be applied to overcome the limitations of the MIC in clinical antibiotic dosing decisions, drug research and preclinical development

    Hypervirulent Klebsiella pneumoniae Sequence Type 420 with a Chromosomally Inserted Virulence Plasmid

    No full text
    Background: Klebsiella pneumoniae causes severe diseases including sepsis, pneumonia and wound infections and is differentiated into hypervirulent (hvKp) and classic (cKp) pathotypes. hvKp isolates are characterized clinically by invasive and multiple site infection and phenotypically in particular through hypermucoviscosity and increased siderophore production, enabled by the presence of the respective virulence genes, which are partly carried on plasmids. Methods: Here, we analyzed two K. pneumoniae isolates of a human patient that caused severe multiple site infection. By applying both genomic and phenotypic experiments and combining basic science with clinical approaches, we aimed at characterizing the clinical background as well as the two isolates in-depth. This also included bioinformatics analysis of a chromosomal virulence plasmid integration event. Results: Our genomic analysis revealed that the two isolates were clonal and belonged to sequence type 420, which is not only the first description of this K. pneumoniae subtype in Germany but also suggests belonging to the hvKp pathotype. The latter was supported by the clinical appearance and our phenotypic findings revealing increased siderophore production and hypermucoviscosity similar to an archetypical, hypervirulent K. pneumoniae strain. In addition, our in-depth bioinformatics analysis suggested the insertion of a hypervirulence plasmid in the bacterial chromosome, mediated by a new IS5 family sub-group IS903 insertion sequence designated ISKpn74. Conclusion: Our study contributes not only to the understanding of hvKp and the association between hypervirulence and clinical outcomes but reveals the chromosomal integration of a virulence plasmid, which might lead to tremendous public health implications

    Nearly Identical Plasmids Encoding VIM-1 and Mercury Resistance in Enterobacteriaceae from North-Eastern Germany

    No full text
    The emergence of carbapenemase-producing Enterobacteriaceae limits therapeutic options and presents a major public health problem. Resistances to carbapenems are mostly conveyed by metallo-beta-lactamases (MBL) including VIM, which are often encoded on resistance plasmids. We characterized four VIM-positive isolates that were obtained as part of a routine diagnostic screening from two laboratories in north-eastern Germany between June and August 2020. Whole-genome sequencing was performed to address (a) phylogenetic properties, (b) plasmid content, and (c) resistance gene carriage. In addition, we performed phenotypic antibiotic and mercury resistance analyses. The genomic analysis revealed three different bacterial species including C. freundii, E. coli and K. oxytoca with four different sequence types. All isolates were geno- and phenotypically multidrug-resistant (MDR) and the phenotypic profile was explained by the underlying resistance gene content. Three isolates of four carried nearly identical VIM-1-resistance plasmids, which in addition encoded a mercury resistance operon and showed some similarity to two publicly available plasmid sequences from sources other than the two laboratories above. Our results highlight the circulation of a nearly identical IncN-type VIM-1-resistance plasmid in different Enterobacteriaceae in north-eastern Germany

    Extended-Spectrum ß-Lactamase-Producing Escherichia coli in Conventional and Organic Pig Fattening Farms

    No full text
    Antimicrobial resistance is an increasing global problem and complicates successful treatments of bacterial infections in animals and humans. We conducted a longitudinal study in Mecklenburg-Western Pomerania to compare the occurrence of ESBL-producing Escherichia (E.) coli in three conventional and four organic pig farms. ESBL-positive E. coli, especially of the CTX-M type, were found in all fattening farms, confirming that antimicrobial resistance is widespread in pig fattening and affects both conventional and organic farms. The percentage of ESBL-positive pens was significantly higher on conventional (55.2%) than on organic farms (44.8%) with similar proportions of ESBL-positive pens on conventional farms (54.3–61.9%) and a wide variation (7.7–84.2%) on organic farms. Metadata suggest that the farms of origin, from which weaner pigs were purchased, had a major influence on the occurrence of ESBL-producing E. coli in the fattening farms. Resistance screening showed that the proportion of pens with multidrug-resistant E. coli was similar on conventional (28.6%) and organic (31.5%) farms. The study shows that ESBL-positive E. coli play a major role in pig production and that urgent action is needed to prevent their spread

    Antibiotic-Resistant Enterobacteriaceae in Wastewater of Abattoirs

    No full text
    Antibiotic-resistant Enterobacteriaceae are regularly detected in livestock. As pathogens, they cause difficult-to-treat infections and, as commensals, they may serve as a source of resistance genes for other bacteria. Slaughterhouses produce significant amounts of wastewater containing antimicrobial-resistant bacteria (AMRB), which are released into the environment. We analyzed the wastewater from seven slaughterhouses (pig and poultry) for extended-spectrum ÎČ-lactamase (ESBL)-carrying and colistin-resistant Enterobacteriaceae. AMRB were regularly detected in pig and poultry slaughterhouse wastewaters monitored here. All 25 ESBL-producing bacterial strains (19 E. coli and six K. pneumoniae) isolated from poultry slaughterhouses were multidrug-resistant. In pig slaughterhouses 64% (12 of 21 E. coli [57%] and all four detected K. pneumoniae [100%]) were multidrug-resistant. Regarding colistin, resistant Enterobacteriaceae were detected in 54% of poultry and 21% of pig water samples. Carbapenem resistance was not detected. Resistant bacteria were found directly during discharge of wastewaters from abattoirs into water bodies highlighting the role of slaughterhouses for environmental surface water contamination

    Multidrug-Resistant High-Risk Escherichia coli and Klebsiella pneumoniae Clonal Lineages Occur in Black-Headed Gulls from Two Conservation Islands in Germany

    No full text
    Multidrug-resistant (MDR) Enterobacterales, including extended-spectrum ÎČ-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, not only emerge in healthcare settings but also in other habitats, such as livestock and wildlife. The spread of these pathogens, which often combine resistance with high-level virulence, is a growing problem, as infections have become increasingly difficult to treat. Here, we investigated the occurrence of ESBL-producing E. coli and K. pneumoniae in fecal samples from two black-headed gull colonies breeding on two nature conservation islands in Western Pomerania, Germany. In addition to cloacal samples from adult birds (n = 211) and their nestlings (n = 99) during the 2021 breeding season, collective fecal samples (n = 29) were obtained. All samples were screened for ESBL producers, which were then subjected to whole-genome sequencing. We found a total of 12 ESBL-producing E. coli and K. pneumoniae consisting of 11 E. coli and 1 K. pneumoniae, and including the international high-risk E. coli sequence types (ST)131, ST38, and ST58. Eight of the investigated strains had a MDR genotype and carried a large repertoire of virulence-associated genes, including the pap operon, which is important for urinary tract infections. In addition, we identified many genes associated with adherence, biofilm formation, iron uptake, and toxin production. Finally, our analysis revealed the close phylogenetic relationship of ST38 strains with genomes originating from human sources, underlining their zoonotic and pathogenic character. This study highlights the importance of the One Health approach, and thus the interdependence between human and animal health and their surrounding environment
    corecore